After making an impression, remove healing abutments and determine the correct height of the TSA abutment. Make sure that the shoulder is positioned deeply enough under the mucosal tissue, analogous to a traditional abutment. However, a shoulder that is situated too deeply should be avoided in cemented constructions due to the presence of cement residue that is difficult to remove.

Definitive positioning of the abutments and tightening with a force of 35 Ncm.
Placing the impression posts over the abutments. When the posts are correctly positioned, there is a clearly audible ‘click’ (circle snap) and the internal hexagon of the impression post slides over the external hexagon of the TSA abutment. If this does not work, rotate the impression post slightly and press again. Internal and external hexagons must slide over one another precisely. This high level of precision guarantees the correct transfer to the definitive model. It is for this reason that the abutment may not be rotated any further after making the impression.

Make the impression with a closed tray and with conventional impression materials. Be careful for air bubbles around the impression posts. Air bubbles can be prevented by first injecting impression material around the impression posts, then filling the tray and then placing the tray in the mouth.

Remove the impression. The impression posts are fixed in the impression, and the model analogues are positioned in them. The external hexagon of the model analogue slides precisely into the internal hexagon of the impression post. Here too there is a clearly audible ‘click’ (circle snap).

Construction of a definitive working model and suprastructure.

The impression posts are removed from the tray and serve as the basis for the modelling of a structure on the TSA abutments. The geometry of the abutment together with the lateral freedom of motion usually makes the use of inclined abutments unnecessary. Just as with an overdenture, a divergence of up to 30° between two implants can be bridged. The bridgework clicks, as it were, over the abutments. On the inside of the impression post there is a slight bulge (snap) which must be removed. This can be done using a scalpel or a suitable bur. The hexagon must remain intact.
Modelling, embedding and casting according to the conventional techniques. The plastic cylinder consists of a POM plastic that can be burned away without leaving behind a residue. Consult the manufacturer’s instructions for use for the correct powder/liquid mixing ratio of the embedding paste.

The TSA abutment is extremely well suited to structures constructed using Cad/Cam technology. Given that the structures are cemented, SLM technology can be used for their production. This greatly reduces their cost.

When finishing the metal structure, the precision of the internal hexagon must be preserved as much as possible. After all, after positioning, the bridgework must be ‘rigidly’ attached to the TSA abutment so that the forces are maximally absorbed.

Follow-up procedure for dental technician

Complete the bridgework with plastic or porcelain.

Follow-up procedure for dentist

Definitive placement of the bridgework. The general rule is that when the total height of the construction amounts to no more than twice the height of a TSA abutment (4.2 mm), temporary cement can be used. In contrast to a conventional abutment, where the strength of the cement attachment is determined by the type of cement used and the area of the surface to be cemented, a TSA abutment is not subject to these conditions. The forces here are distributed uniformly. Bridge constructions with a height of more than 8.4 mm are permanently cemented. The use of a bonding agent is recommended.